

138M Watch mins

Prateek Jain

\#1 Educator in Physics • IIT JEE
Senior Physics Faculty (KOTA) | 8+ yrs exp. | Produced AIR 6, AIR 10 etc. | Research work with HC VERMA sir at IIT K.

10M Watch mins (last 30 doys)
78K Followers
7K Dedicotions
(8)25xD

Prateek Jain

\#1 Educator in Physics • NEET UG
Senior Physics Faculty (KOTA) | $8+$ yrs exp. | Produced AIR 6, AIR 10 etc. | Research work with
HC VERMA sir at IIT K.

Dedications

Gold Hat

Dedicated at 100 k minutes

Pij Mudassir Hussain BTS • 12 minutes ago
A good teacher is like a candle it consumes itself to light the way for others.Thanks sir

Medha Mishra - 3 hours ago
Sir you are best physics faculty that i have seen in my life i like your teaching style i like your way of explanation of concept and you make me capable to solving the physics problem thanku () sir

HIEUIEST IO OF OU MiOL UM:GID:स PLATITOIH

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

Early Achievers Batch
 For NEET 2022

SHUBHKARAN CHAUDHARY

Starts on Aug 11

Excel Batch for Droppers

Piyush Maheshwari

Prateek Jain

Sachin Rana

Brijesh Jindal

- SUBSCRIBE

CLICK

H.C. Verma Physics Questions for Short Answers

C-24 Kinetic Theory of Gases

By PRATEEK JAIN SIR

Q) When we place a gas cylinder on a van and the van moves, does the kinetic energy of the molecules increase? Does the temperature increase? $\rightarrow N_{0}$

Q) While gas from a cooking gas cylinder is used, the pressure does not fall appreciably till the last few minutes. Why?

Q) Do you except the gas in a cooking gas cylinder to obey the ideal gas equation? $\longrightarrow N_{0}$

Q) Can we define the temperature of vacuum? The

 temperature of a single molecule?No.

Q) Comment on the following statement. The temperature of all the molecules in a sample of a gas is the same.

Q) Consider a gas of neutrons. Do you except it to behave much better as an ideal gas as compared to hydrogen gas at the same pressure and temperature?

H_{2} gas

Neutrons gas
Q) A gas is kept in a rigid cubical container. If a load of $\mathbf{1 0}$ kg is put on the top of the container, does the pressure increase?

Q) If it were possible for a gas in a container to reach the temperature 0 K , its pressure would be zero. Would the molecules not collide with the walls? Would they not transfer momentum to the walls?

Q) It is said that the assumptions of kinetic theory are good for gases having low densities. Suppose a container is so evacuated that only one molecule is left in it. Which of the assumptions of kinetic theory will not be valid for such a situation? Can we assign a temperature to this gas? $\rightarrow N_{0}$

$$
P V=n R T
$$

Q) A gas is kept in an enclosure. The pressure of the gas is reduced by the pumping out some gas. Will the temperature of the gas decrease by Charles' law? $\rightarrow N_{0}$

$$
\begin{aligned}
& \text { This is not } \\
& \text { Charlie's bani } \\
& P J V=n / R T
\end{aligned}
$$

$$
\rightarrow V=\operatorname{cont} n=\text { cont }
$$

Q) Explain why cooking is faster in a pressure cooker.

$$
\xlongequal{p \hat{i}=>}
$$

B. P. \uparrow

Q) If the molecules were not allowed to collide among themselves, would you expect more evaporation or less evaporation?

$$
300 \mathrm{~K}
$$

Q) Is it possible to boil water at room temperature, any $30^{\circ} \mathrm{C}$? If we touch a flask containing water boiling at this temperature, will it be hot?

Q) When you come out of a river after a dip, you feel cold. Explain?

Chalo

